
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engi-
neering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions,

findings, conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering.

Real Time Coincidence Processing Algorithm for
Geiger-Mode Ladar using FPGAs

Rufo A. Antonio1, Alexandru N. Vasile1, Muller Lon1, Francis Thomas1

1Massachusetts Institute of Technology - Lincoln Laboratory, Lexington, MA, USA

Abstract. This paper introduces the first ever Geiger-mode ladar processing al-
gorithm that is suitable for implementation on an FPGA enabling real time pro-
cessing and data downlink. Current airborne Geiger-mode ladar systems obtain
high resolution and wide area coverage, but require sensors and processing
counterparts with large size, weight, and power (SWaP) requirements. We are
developing an airborne “Micro-ladar” system that collects up to 1 billion sam-
ples/sec, weighs on the order of 250 grams, consumes no more than 20W and
fits in a package not much larger than a coffee cup (320cc). To reduce SWaP,
we developed embedded FPGA real time processing algorithms that take noisy
raw data, streaming at upwards of 1GB/sec, and filters the data to obtain a near-
ly noise-free 3D point cloud with high compression rates, resulting in a
2MB/sec output data rate that can be readily downlinked to the ground over
typical UAV communication links. A physical 64x256 Geiger-mode ladar array
was integrated with an FPGA processing board running a baseline processing
algorithm where the processing board has 8 orders of magnitude lower SWaP
(m3kgW) than typical airborne ladar processing systems. Quantitative results
using simulated ladar data input indicate that the new FPGA algorithm produc-
es data with quality comparable with previous state of the art 3D ladar pro-
cessing algorithms while suffering a reduction in area coverage rates.

1 Introduction

3D ladar imaging sensors are critical enablers for autonomous navigation systems
in robotic and unmanned aerial vehicle (UAV) applications, as well as for airborne
wide-area 3D terrain mapping and foliage penetration (FoPen) missions in support of
national security (Albota M. H., 2002). In this paper, we develop the first ever Geiger-
mode ladar processing algorithm implemented on a FPGA. By utilizing FPGAs we
are able to achieve a “micro-ladar” system that resides in a design space not previous-
ly explored. It has sampling rates on the same order scale as the much larger airborne
ladar system, ALIRT, but operates at shorter ranges measured in hundreds of meters
instead of kilometers (Knowlton, 2011).

The rest of the paper is organized as follows. In section 2 we review related work
that is essential in the implementation process. Section 3 discusses the different FPGA
algorithm implementations. In Section 4 we present our implementation and results
including FPGA complexity studies and algorithm performance results. Detailed
FPGA utilization reports are generated for current operating parameters and extrapo-
lated for future system upgrades. Simulated ladar data is processed using the FPGA

and compared to the Matlab output (Michael E. O’Brien, 2005). Section 5 concludes
with a discussion of the lessons learned and directions for future work.

2 Related Work

Three-dimensional Laser Radar (3-D Lidar) sensors output range images, which
provide explicit 3-D information about a scene (Heinrichs, 2001). Most 3D imaging
for robotics rely on synchronous time of flight (TOF) focal plane arrays (FPAs), with
one example of that being the Microsoft Kinect sensor. Such sensors typically work
up to 10m in range, limited lighting conditions (indoor), and take on the order of 100k
to 1million measurement samples per second. Pulsed TOF FPAs, such as Velodyne
Lidar, are used for precision surveys and autonomous vehicle navigation, with ranges
upwards of 1km and 100k to 1 million measurement samples per second. Next up are
pulsed, flying spot single pixel linear mode sensors, with increased range to target,
but still limited measurement rates fewer than 1 million samples per second. Such
systems are used for mapping applications, however their area coverage rates border
on the low side for collecting high resolution imagery over large regions. Figure 1
provides some background on where prior 3D imaging systems map in terms of
measurement sampling rates versus range to target.

Figure 1. Background on where prior 3D imaging systems map in terms of measurement sam-
pling rates versus range to target.

Pulsed Geiger-mode APDs, especially combined with scanning hardware, offer a
significant step-up in both measurement rates (100 mil samples per second) and range
to target (10km+), thanks to ever larger multi-pixel arrays as well single-photon sensi-
tive detection (Albota M. A., 2002) (Aull, 2002). An example of such a system is
ALIRT (~10-20 million samples/sec, 7km range) (Knowlton, 2011).

The proposed “micro-ladar” system resides in a location not previously explored in
this parameter space. It has sampling rates on the same order scale as ALIRT, but at
shorter ranges to target, hundreds of meters instead of kilometers (Marino, 2003). To
be able achieve this measurement rate while requiring a many-order reduction in size-

weight and power (SWaP) necessitates a radical rethink of the algorithms used to
process the data.

3 FPGA Implementation of Noise Filtering Algorithm

In this section we introduce and implement novel Geiger-mode ladar de-noising
algorithms (PixelCP) developed for Field Programmable Gate Arrays (FPGAs).

3.1 Algorithm Design

A new set of 3D ladar noise filtering algorithms must be developed in order to
achieve such a drastic reduction in SWaP while maintaining performance. The algo-
rithms were first implemented in Matlab where multiple modules of varying complex-
ity were developed, leading to a large number of possible module combinations (384
variants). Figure 2 captures a high-level description of each processing step as well as
implemented modules. This paper explores the implementation of a modified “base-
line” algorithm.

Figure 2. PixelCP Variants.

For the first step, transforming the data, we have two options: motion compensa-
tion enabled or disabled. For the no-motion compensation option, we are assuming
the sensor movement is negligible and that each APD pixel captures the same scene
location. The data is transformed from raw range data directly to a 3D angle-angle-
range (AAR) space that is defined in angle-angle by the APD row-col information. In
essence, we are taking the blur hit due to any jitter or unexpected movement during
that integration time. For the motion compensation case, we developed a method that
is computationally much less complex that the transform codebase (Vasile, 2012)
used on prior 3D ladar sensors. The reason for this is that such transforms require a lot
of double precision floating point math, which are not well suited to FPGA imple-
mentation. Thus, we developed an approximate transform method, where we define a
3D angle-angle-range space in the APD row-col-range space of the first frame for a
given integration period. The rest of the APD data frames within an integration inter-
val are motion compensated compared to first-frame AAR space, by first computing
the relative rotation-translation compared to the first frame, and then applying that
projection matrix to just the center line of sight (LOS) at average range for that cur-

rent frame, in order to obtain an delta row-col-range translation. This motion compen-
sation transformation from raw stream to a 3D AAR space is exact for the center line
of sight, but only approximate for the remaining pixels under certain conditions. Giv-
en no sensor translation and just roll-pitch rotational changes (due to mirror scanning,
platform attitude), the 3D transformation is equivalent to a full per-pixel transform.
With sensor translation and/or yaw rotation (rotation around the center LOS), the
motion compensation transform is only an approximation of the full per-pixel trans-
form. For translation-only motion, these approximations are present due to variation
in range position and are negligible considering that the range to target (300m) and
range gate (~100m) are much bigger than the platform movement (15m/sec) over an
integration time upwards of 100ms, which leads to 1.5m of movement. In essence, 3D
Cartesian translation errors can be well approximated as 3D AAR space translations
through the use of small angle approximations. However, the motion compensation
approximation is very sensitive to yaw-rotations (around the center LOS) with the
array size amplifying the effect: even for small sub-pixel pitch angles (<100uR), the
lever arm effect for an APD corner pixel compared to the center pixel can lead to
significant blur. For example, a 50uR (1/2 pixel error) yaw rotation would lead to a
blur on the corner of a 256x256 APD array of 50uR * (1282+1282).5 /100uR = 90
pixel error. Considering that most attitude changes for a Puma-like fixed wing UAV
occur in roll-pitch rather than yaw, and mirror scanning typically can be expressed as
purely roll-pitch changes, the sensitivity to yaw changes is not concerning. If we
decide to use a different platform, such as a quad-copter, the motion-compensation
might need to be improved. For now, we will implement this approximate motion
compensation technique, as the computation is simple and the approximation holds
well for our target platform.

Now that we have data converted to a 3D AAR space, we attempt to automatically
distinguish signal from noise using the spatial coincidence of points. The concept is
fairly simple to grasp: the more 3D points returned at the same spatial location, the
more it is likely that the points came from a real scene surface as opposed to “hits”
due to background light or dark noise. To detect spatial coincidence, we bin data into
3D voxels of various volumes in terms of pixel-pixel-range units. Smaller bin sizes
allow for higher frequency data to be captured, at the expense of increased ability to
detect signal from noise and lower memory storage requirements. Larger bins recover
signal better in present of noise and lead to lower memory storage, but lead to reduc-
tion in 3D data fidelity. The best of both worlds (high fidelity and good SNR) can be
achieved by convolution.

For small bin sizes, where we have high 3D fidelity, the SNR is typically not
enough to discriminate signal from noise. Convolution is used to recover spatial coin-
cidence, while still preserving 3D data fidelity. For small bin sizes, 3D convolution is
applied, where a 3D matched kernel is convolved with the 3D binned array. This
matched kernel typically takes on the shape of the system point spread function
(PSF), which captures sensor uncertainties in the angle-angle and range directions.
The kernel can be a full 3D kernel, but might also consist of just a 2D angle-angle
kernel, or potentially just a 1D range kernel, depending on the angular error to angular
bin size ratio and range error to range bin size ratio.

Once coincident information is available, we can now detect valid signal as 3D
peaks. The peak estimation algorithm has four algorithm variants to choose from.

The first is single peak option and fixed threshold. In this method, a predetermined
noise threshold is set for the minimum bin value. The values for each unique angle-
angle bin are considered, to extract a 1D histogram in the range direction. For each
histogram, the index that contains the maximum bin value is recorded as the single-
peak range position, with the bin value directly determining the 3D point reflectivity.
The result is a 2 ½ D single peak range image. The adaptive threshold and single peak
method is similar to the first approach, but now adaptively determines a threshold
based on overall signal integration, bin size as well current data strength. The third
algorithm, a fixed threshold multi-peak method, outputs both the first peak as well as
the last peak above a certain threshold, leading to a 2-peak solution. The most ad-
vanced algorithm uses a non-maxima suppression technique to identify peaks maxima
and ignore peak-begin and -end tails, and outputs all such peak locations above an
adaptive threshold.

 The peak estimation algorithm ties closely with the peak detection algorithm. The
first method considers the index for the maximum bin value as the resulting output
range position. This leads to gridding and discretization in range results, with flat
surfaces appearing jagged. The second method takes into account neighboring angle-
angle-range bins to obtain a floating point estimate in both angle-angle and range,
removing some of the gridding artifacts.

Lastly the reflectivity algorithm has three methods to choose from. The first meth-
od assigns the reflectivity based directly on the bin value. The second method takes
into account integration time to obtain what is better known as “probability of detec-
tion”. The third method is based off of the second method, but takes into account the
effects of APD and photon blocking effects for surfaces under foliated conditions.

In order to evaluate algorithm performance and capture image quality as a function
of different data collection parameters, we need quantitative image quality metrics.
For this analysis we observe angular resolution, range precision, impulse detection,
edge sharpness, FOPEN ground coverage, and SNR.

3.2 Single Peak Detection

We first implemented a very basic PixelCP algorithm directly in VHDL. For this
we selected module variants that would be easily parallelized and implemented on a
FPGA. We chose not to incorporate motion compensation in our implementation
because its complexity and benefits where deterministic of the devices used for meas-
uring motion. For binning data we used a uint to uint operations while using eight by
eight “macro-pixels”. This meant that each group of 64 pixels would produce one
output image pixel. In the next step we chose to forgo convolution as it is the most
complex operation. For the peak detection, we used fixed-threshold, single-peak, and
max-bin index methods. Lastly we implemented the normalized peak value algorithm
for the reflectivity estimation.

The first step was to think of a way to highly parallelize this combination of Pix-
elCP modules. We found that each “macro-pixel’s” operations were done completely
independently of each other and therefore would be the best place to start parallelizing
the algorithm. Next, the range value from each of the 64 pixels inside the macro-pixel
is used as the address for the bin memory. The value of each pixel is read sequentially

as the address for the bin memory. The value at that address is then incremented by
one and written back into the bin memory at that same address. Additionally, when
the value in the bin memory is incremented by one it is also compared to the last
known highest value. If the new value is equal to or greater than the previous value, it
is stored in an output memory block, “Max Hits”. We then check to see if the value
has been changed and if so the bin address that corresponds to that value is also stored
in another output memory block, “Max Range”. A block diagram of the operations
performed on one macro-pixel can be seen below in Error! Reference source not
found..

Figure 3. Single peak block diagram.

Over the entire array 256 individual macro-pixels are operated on in parallel and
therefore produce one output as quickly as possible. In addition to parallelizing the
macro-pixels we also implemented the firmware to operate as data was being read in
from the array. For example if the array was reading data from four quadrants at the
same time each quadrant would be operated on as the data flowed in real time. This
allows us to pipeline the processing with the data input so that there is no delay from
data gathered to processed output.

In order to simplify timing and synchronization between the FPGA and the APD
the FPGA clock is operated at 125 MHz, the same rate as the APD data readout. We
can then use our knowledge of FPGA components to calculate an expected comple-
tion time. Reading all 64 pixels into memory takes 2 clocks per pixel, for a total of
128 clocks. Incrementing the value and storing it back in memory takes another 2
clocks. All together this makes 256 clocks per output. If all the macro-pixels are oper-
ated on in parallel then the output should be ready in 2.048 microseconds. This is far
faster than the 20 kilohertz (50 microseconds) frame rate of the system.

3.3 Multi-Peak Detection

Next, we implemented a second/multi-peak implementation in order to achieve fo-
liage penetration. We came up with a method that identified any number of additional
peaks without the need to reprocess the input data. The first peak would be calculated
exactly identically to the single peak version and then the bin memory would be re-
processed to produce a second peak.

The value of the max range output of the first peak is used as a starting address in
the bin memory. From that point a predetermined range offset is subtracted from the
address as to avoid any nearby false peaks. The value at this new memory address
(range) is compared with the last known highest value. If the new value is equal to or
greater than the previous value, it is stored in a second output memory block, “Max
Hits”. If the value has been changed the bin address that corresponds to that value is
also stored in another output memory block, “Max Range”. A block diagram of the
operations performed on one macro-pixel can be seen below in Figure 4.

Figure 4. Multi-peak block diagram.

This method preserves the parallelized macro-pixels that were created in the first
peak. We can then repeat this algorithm to allow for any number of additional peaks
to be detected. However, these additional peaks require that the previous peak must be
fully processed and therefore sequentially add time to the total process.

In order to simplify timing and synchronization between the FPGA and the APD
the FPGA clock is operated at 125 MHz, the same rate as the APD data readout. We
can then use our knowledge of FPGA components to calculate an expected comple-
tion time. For the second peak not all 64 pixels must be read from memory. The num-
ber can fluctuate depending on the location of the first peak. If we assume that the
first peak is in the upper half of the range extent then we can also assume approxi-
mately 50 percent of the pixels will be read out. In this case there are only a total of
128 clocks per output. If all the macro-pixels are operated on in parallel then the out-
put should be ready in 1.024 microseconds. This is far faster than the 20 kilohertz (50
microseconds) frame rate of the system.

4 Results

The following sections report on FPGA utilization, algorithm timing, and compare
the outputs with known good outputs from Matlab. Reports were generated using
Xilinx and Questa Modelsim development tools. All results were conducted on Kin-
tex 7s with a clock speed of 125 MHz 64 by 256 array operating frame rate of 20.

4.1 Timing Analysis

We closely analyzed Modelsim simulations to determine the performance of both
the single and multi-peak algorithms. For the single peak algorithm we found that the
processing could be conducted as the raw data was read in. This removed the wait for
incoming data to finish before processing. Additionally, we reduced the number of
macro-pixels operating in parallel as most were idle while waiting for data to come in.
This method reduced FPGA complexity while maintaining timing; however it did
serialized some of the processing steps. Below is a timing diagram that shows the
algorithm implementation on a FPGA. The timing markers in this figure are used as
approximate time identifiers and not for exact timing values.

Figure 5. Multi-peak Timing.

When looking at Figure 5, the signal “frame_count” identifies the current frame
that is being processed and “pix_cnt” identifies the computation of the first peak. The
timing marker on the far left (231886394 picoseconds) identifies the start of data
being read into the FPGA. The second marker (268797322 picoseconds) identifies the
37 microseconds that it takes to read the data in and process the first peak output.
While the timing is significantly longer then what we had calculated in section 3.2, it
still exceeds system requirements.

For the multi-peak implementation we chose to build off of the single peak imple-
mentation. Keeping the partially serialized macro-pixels did slow the second peak
output, but still falls well within the timing requirements of the system. In Figure 5
the second peak processing is identified by the signal “bin_address”. The 8.2 micro-
seconds between the second marker (268797322 picoseconds) and the third marker
(277045162 picoseconds) shows the generation of the second peak output directly
after the first peak processing finishes. After both the first and second peak are both
calculated there is still another 8 microseconds of idle time before the next frame is
ready to process. Although we didn’t implement the functionality there is almost
enough time to perform a third peak calculation and still meet system requirements.

4.2 Algorithm Performance

We defined system requirements in terms of 3D spatial fidelity of processing re-
sults. Prior studies of human interpretability of foliated scenes performed for
FALCON-I as well as ALIRT indicate an x-y post spacing of 25cm or higher fidelity
is needed to accurately identify man-made structures versus vegetation clutter. Thus,
we require that 3D snapshot products retain features on the order of 25cm x-y spatial
resolution. Current technology enables a range resolution around 25cm, which sets the
desired range resolution requirement. Thus, we require a spatial resolution of 25cm in
all three dimensions. MAPCP and MPSCP

Table 1. PixelCP vs. MPSCP Performance

Angular Range Edge

FOPEN
Ground

SNR
Data Redux

Clear|FOPEN

Data
Compres-

sion
PixelCP 1267uR 0.19m 0.3m 31% 0.9*105 187x | 101x 18x
MPSCP 600uR 0.09m 0.14 45% 5*105 ~100x | 25x ~10x

Next, we tested the single and multi-peak design on a simulated data set. A small

snapshot of the simulated raw input data can be seen below in Figure 6.

Figure 6. Raw Simulation Data.

The data set ran through the original Matlab code as well as a Modelsim simulation
and the output images were compared using Matlab's point cloud tool. The outputs of
both can be seen below in Figure 7.

Figure 7. Matlab First Peak Value (Left) vs. FPGA Single/Multi Peak Value (Right).

Upon inspecting the data sets we found small differences in the output images.
However, with further investigation the two algorithms addressed the ambiguity of
similar hit values in different range bins. In this situation the Matlab algorithm would
select the bin with range 50m, however the FPGA algorithm would select the 20m
range bin. This difference in algorithms is neglected as it still returns extremely simi-
lar results.

With verification that both the single and multi-peak implementations met timing
and correctly generated output products on simulate data the next step was to test the
algorithm on a live data stream. For this experiment the system was set up with a 64
by 256 GmAPD operating at a 20 kHz frame rate. Using a PicoQuant laser source a
single pin hole was illuminated so that approximately 10 percent of the photodiodes
were firing at any given time. This data was read out and processed by the FPGA in
real time. The raw input and output products of both the first and second peak can be
seen below in Figure 8.

Figure 8. Live FPGA performance from left to right: raw data input, first peak range, first peak
hit count, second peak range, and second peak hit count.

The image labeled “Max Bin” is the range output of the first peak; it clearly shows
a significant difference in range directly around the center of the image (near the pin
hole). The next image to the right displays the hit counts associated with that range; a
clear image of the laser profile can be seen. The fourth and fifth images show the max
range and hit count of the second peak. However, since only one laser pulse is present
during each frame the data in these outputs is an artificial product of random noise on
the array.

4.3 FPGA Utilization

Furthermore, we generated FPGA utilization reports using Vivado to determine
what FPGA could accommodate these algorithm’s demands. We elected to skip the
single peak only version due to the algorithm and timing performance of the multi-
peak version. Vivado’s report gives us a detailed breakdown of FPGA usage in terms
of bits used in each of the main FPGA blocks (Flip Flops, LUT, LUTRAM, BRAM,
IO, GT, BUFG, CMT, and PCIe interfaces). As shown in Figure 9 the report was
generated for a 256 by 64 size array and compared with a Kintex 7 FPGA.

Figure 9. Multi-Peak PixelCP on K7-410.

From this report we can see that the multi-peak implementation is utilizes signifi-
cantly less of the FPGA in every category compared to the convolution method. The
PCIe utilization is maxed out at 100 percent because the specific FPGA we selected

100.00%
10.00%

31.25%

25.00%

31.40%

27.99%

6.55%

1.94%

16.59%

0% 20% 40% 60% 80% 100%

PCIe

CMT

BUFG

GT

IO

BRAM (36Kb)

Flip Flops

LUTRAM

LUT

Multi‐Peak PixelCP on K7‐410 FPGA

only has one port available. For the system we designed this number would not ex-
pand with more complicated algorithms or larger arrays and therefore can be ignored.

It is apparent from this report that moving to a larger array format, such as a 256 by
256 array would still be plausible on this FPGA. If all resources were assumed to
double with the array size the FPGA would still have resources to spare. However,
further investigation would need to be done for the timing performance.

The SWaP of the processing component of the overall system can now be confi-
dently reduced while still maintaining system performance. As seen in Table 2, there
is a 3*107x reduction from the current state of the art (MPSCP) processing SWaP to
the new “micro-ladar” implementation.

Table 2. PixelCP vs. MPSCP SWaP

Algorithm Size Weight Power
PixelCP 20 in3 <1 lbs ~6 W
MPSCP 4107 in3 270lbs 4000W

5 Conclusion and Future Work

In this paper we developed a coincidence processing algorithm to create high reso-
lution, FOPEN imagery on low SWaP Geiger-mode ladar systems using FPGAs. We
implemented a multi-peak and convolution version of PixelCP on a FPGA. We exam-
ined the performance of these algorithms when compared to their Matlab counter-
parts. Additionally determined their ability to operate with real time performance and
presented the feasibility of implementing these algorithms on existing FPGA technol-
ogy. Finally, we developed an algorithm that met all our system requirements.

Future work involves increasing the clock speed of the FPGA in order to reduce
multi-peak timing. Additionally, a larger array can be implemented to cover larger
areas or increase resolution. Lastly, a VHDL implementation of the convolution algo-
rithm with simulated timing needs to be developed to further identify its validity on
an FPGA.

References

Albota, M. A. (2002). Three-Dimensional Imaging Laser Radars with Geiger-Mode
Avalanche Photodiode. MIT Lincoln Laboratory Journal 13(2), 351-370.

Albota, M. H. (2002). Three-Dimensional Imaging Laser Radar with a Photon-
Counting Avalanche Photodiode Array and Microchip Laser. Applied Optics
41(36), 7671-7678.

Aull, B. L. (2002). Geiger-Mode Avalanche Photodiodes for Three-Dimensional
Imaging. MIT Lincoln Laboratory Journal 13(2), 335-350.

Fouche, D. (2003). Detection and False-Alarm Probabilities for Laser Radars That
Use Gei-gerMode Detectors. Applied Optics 42(27), 5388-5398.

Heinrichs, R. A. (2001). Three-Dimensional Laser Radar with APD. SPIE, vol. 4377,
106-117.

Keicher, A. B. (2000). Development of Coherent Laser at Lincoln Laboratory. MIT
Lincoln Laboratory Journal 12(2), 383-396.

Knowlton, R. (2011). Tech Notes. Retrieved 2016, from MIT Lincoln Laboratories:
http://www.ll.mit.edu/publications/technotes/TechNote_ALIRT.pdf

Marino, R. S. (2003). A Compact 3D Imaging Laser Radar System Using Geiger-
Mode APD Arrays: System and Measurements. SPIE vol. 5086, 1-15.

McIntosh, K. D. (2002). InGaAsP/InP Avalanche Photodiodes for Photon Counting at
1.06 μm. Applied Physics Letters 81, 2505-2507.

Michael E. O’Brien, D. G. (2005). Simulation of 3D Laser. MIT Lincoln Laboratory
Journal 15(1), 37-60.

Vasile, A. N. (2012). Advanced Coincidence Processing of 3D Laser Radar Data.
Advances in Visual Computing Lecture Notes in Computer Science, 382-393.

Zayhowski, J. (1990). Microchip Lasers. MIT Lincoln Laboratory Journal 3(3), 427-
446.

